Q1. (a)	Compour below.	nd C , H₂N(C⊦	H₂)₄NH₂, can	be synthesise	d from ethe	ene in three steps as shown	
	Ethene	Step 1 addition reaction	Compound A	Step 2 ——— Co substitution reaction	ompound B C ₄ H ₄ N ₂	Step 3 Compound C H ₂ N(CH ₂) ₄ NH ₂	
	State th		required fo		ach of con	npounds A and B . e type of reaction involved in	(7)
(b)				polyamide form etween the cha			(4)
(c)	•	n why polyam (ethene) are		graded by sod	ium hydrox	xide whereas polymers such (Total 14 marl	(3) ks)
Q2.	compo	unds such as	H ₂ N(CH ₂) ₆ N	NH_2	e reaction	of dicarboxylic acids with	
		lame the con		the polyamide	nylon 6,6.		(2)

Draw the structure of 2-aminopropanoic acid.

Synthetic polyamides have structures similar to those found in proteins.

(i)

(b)

(ii) Draw the organic product formed by the condensation of two molecules of 2-aminopropanoic acid.

(2)

(c) Compounds like H₂N(CH₂)₆NH₂ are also used to make ionic compounds such as **X**, shown below.

$$\begin{bmatrix} CH_3 & CH_3 \\ I & I \\ H_3C - N^+ - (CH_2)_6 - N^+ - CH_3 \\ I & CH_3 & CH_3 \end{bmatrix} \quad 2Br^-$$

Compound X

(i) **X** belongs to the same type of compound as (CH₃)₄N·Br-Name this **type** of compound.

(ii) State a reagent which could produce **X** from H₂N(CH₂)₆NH₂ and give a necessary condition to ensure that **X** is the major product.

Reagent

Condition

(iii)	Name the mechanism involved in this reaction to form X .	
		(4)
		(Total 8 marks)